Simulation and Visualization of Optimal Geometry

John M. Sullivan

Co-Chair, Berlin Mathematical School Professor of Mathematics, TU Berlin

Illustrating Mathematics ICERM, Providence, 30 June / 1 July 2016

Berlin Mathematical School

Berlin Mathematical School

- Joint math graduate school
- Funded since 2006 by German Excellence Initiative
- Combined offerings of three departments

Freie Universität

Berlin Mathematical School

Berlin Mathematical School

- Fast-track program (Bachelor to Ph.D. in 4-5 years)
- Basic and advanced graduate courses in English
- Thesis research often within RTG, SFB, etc.
- Scholarships available
- Mentoring, soft-skills, summer schools

www.math-berlin.de

Beauty in Mathematics

Beautiful proofs

- "Proofs from the Book" (Erdős)
- share "Aha!" moment (Eureka)
- show people why theorem true
- make new abstract truths visible

Visual beauty

Optimization problems in (low-dim'l) geometry → pleasing shapes?

Four-Color Theorem

Erroneous proofs Kempe 1879 / Tait 1880

Each remained unchallenged for 11 years

Computer-assisted proof Appel/Haken 1976

- almost 2000 cases checked by computer (tour-de-force)
- not the "Proof from the Book"; hardly aids understanding

Trust this proof?

- Better than if 2000 cases checked by hand
- Computer programming very unforgiving while most math papers have unimportant small errors
- Now computer-verified in Coq: emphasis on trusting not understanding

Mathematical thinking styles

Many people (Felix Klein, ...) distinguish three types

Philosoper

Conceptual

Analyst

Analytical: formulas, equations, manipulations

Geometer

Visual: pictures, diagrams, spatial relations

Try to address all three groups when teaching R.Hamilton / R.Bryant / collaborators

My Aha! moments – later need to work things through

Topology as source of problems in Geometry

- Start with some deformable object
- Find "best" geometric representative
- Minimize some geometric energy
- Natural processes minimize free energy
- Geometric energies depend on shape
 e.g. surface tension, elastic bending energy

Example 1: Double bubble

Two soap bubbles with given volumes

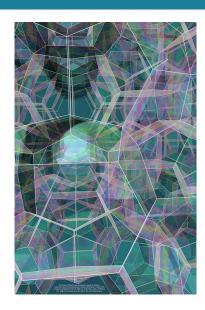
Standard bubble best

2D: [Foisy 1992];3D, equal vol: [HS 2000]

• 3D: [HMRR 2002]; 4D: [2002]

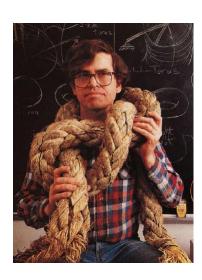
Equal-volume foams

- Partition space into unit-volume regions
- Kelvin [1887]
 BCC trunc. octahedra
- Weaire/Phelan [1994]
 TCP structure A15
 with two cell types



Bill Thurston (1946–2012)

- Influential vision of how to understand 3D manifolds
- Quite different to imagine a space
 - small (hold it in your hands)
 - big (live inside it)
- Wrote movingly about difficulty of expressing visions to others
- Visual insights not easily expressed in words or formulas
- Slightly easier face-to-face
- "Proof and Progress" (not "Death of Proof")



Weaire-Phelan Foam

Tomás Saraceno: Cloud City

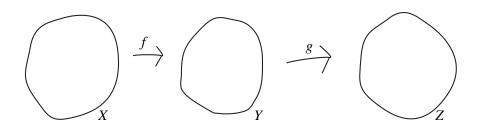
Mathematical Visualization

= using pictures to convey mathematics

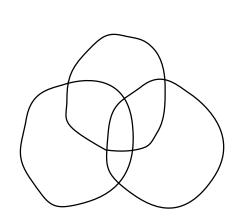
Types of pictures

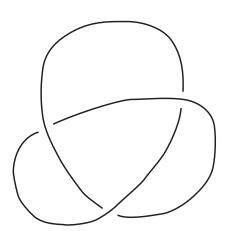
- symbolic sketches (map composition, fiber bundle)
- topological diagrams (Venn, knot, planar graph)
- proof w/o words
- 2D geometric diagram
- rendering (photorealistic?) of 3D object
- stereoscopic rendering
- 3D models / sculptures

Symbolic sketches

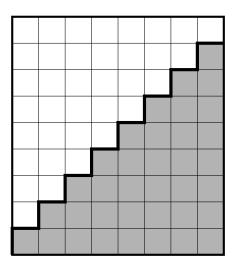


Topological diagrams



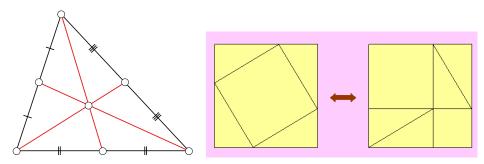


Proof without words

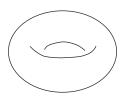


$$1 + 2 + \cdots + n = n(n+1)/2$$

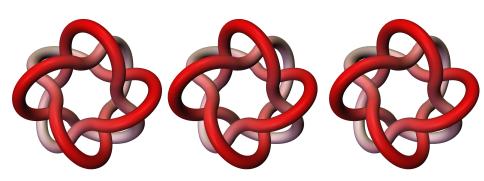
2D geometric diagram



Rendering of 3D object



Stereoscopic Rendering



3D Models / Sculptures

Bathsheba Grossman

Mathematical Visualization

= using pictures to convey mathematics

Types of pictures

- symbolic sketches (map composition, fiber bundle)
- topological diagrams (Venn, knot, planar graph)
- proof w/o words
- 2D geometric diagram
- rendering (photorealistic?) of 3D object
- stereoscopic rendering
- 3D models / sculptures

Animations – add a time dimension

Narrative animation

- Fixed time sequence telling a story
- Good path through higher-dimensional parameter space
- Often with voice narration
- Good for video, group presentation

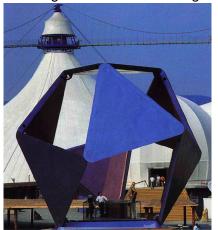
Interactive animation

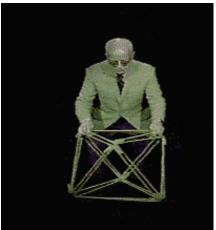
- User navigates through parameter space
- With guidance: limited freedom helpful
- Good for individual learning
- Now possible on all machines
- Open source (for experiments)

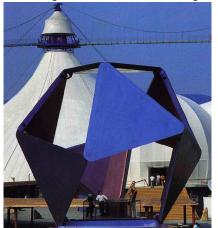
Guided interactive animation

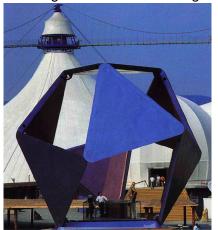
- More freedom doesn't necessarily help user special purpose applet say for Taylor series
- Analogous to artistic constraints helping creativity
 Sonnet form, etc., in poetry
 species counterpoint in Renaissance music (pedagogical tool)

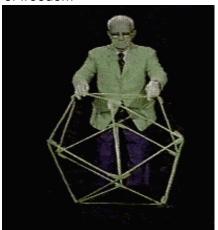
 Arvo Pärt: tintinnabuli
- Zometool vs. more general modeling kits

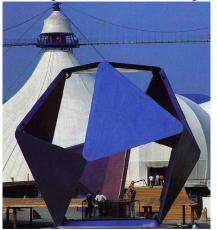


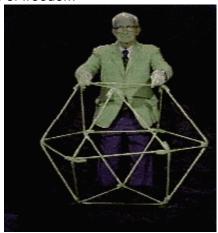








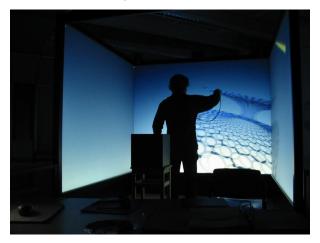




Show Loeb project

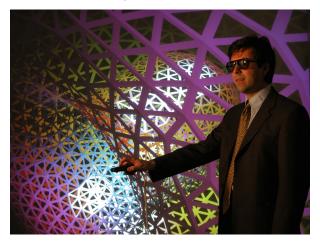
Immersive virtual reality

- Stereo, interactive, photorealistic animation, filling full visual field
- Gives user sense of being in an artificial world



Immersive virtual reality

- Stereo, interactive, photorealistic animation, filling full visual field
- Gives user sense of being in an artificial world



Vision and perspective

Perspective projection

- "Trivial" mathematics (matrix multiplication)
- Easy for computers
- Hard for people (except algorithmically) because mental model 3D

Reconstructing 3D scene

- Automatic (unconscious) for humans
- "Computer vision" very hard

Topological diagram

Easier by hand; harder by computer

Visual thinking without vision

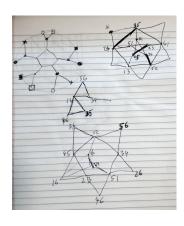
Bernard Morin

- Blind since age 5
- Expert on sphere eversions

Bill Thurston: no stereo vision

Using these pictures

- All types: communicating mathematics
- Computer graphics: view
 - computer experiments
 - numerical simulations
- Hand sketches:
 - work out visual ideas
 - temporary, personal meaning
 - how 3D pieces fit together
- Let K be the knot in Fig. 1 . . . (vs. Gauss code)



Visual imagination

- Improves with practice
- "Flatland" (Abbott, 1884) dimensional analogies
- "Geometry and the Imagination" Hilbert / Cohn-Vossen ("Anschauliche Geometrie", 1932)

Example 2: Tight knots

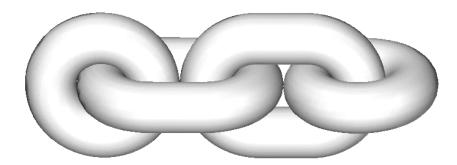
- Tie a given knot in unit diameter rope
- Pull it tight (least length)
- What is its shape?
- Unknown!

Geometric Knot Theory

- Geometric properties determined by knot type or implied by knottedness
- Seek optimal shape for a given knot (optimal geometric form for topological object)
- Minimize geometric energy

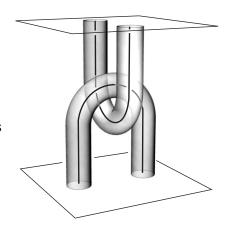
Minimizers (Tight links)

- Exist for any knot/link [CKS'02: Inventiones]
- Unknown for trefoil, figure 8, ... any knot
- Known for some links (Proof uses minimal surfaces)
- Need not be C²



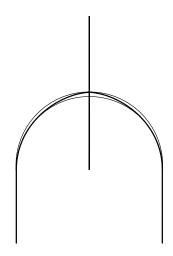
Tight clasp

- Two linked arcs
- Free boundary in || planes



Tight clasp

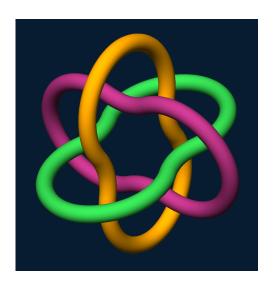
- Not semicircles!
- 0.5% shorter
- Elliptic integrals
- Curvature blows up



Borromean rings

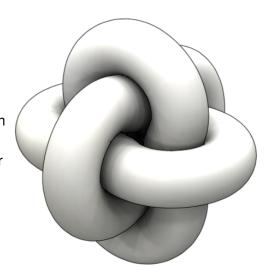
- Three linked loops
- No two are linked
- Strength in unity

[show The Borromean Rings]



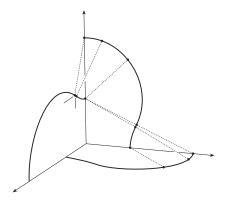
Borromean rings

- Critical configuration
- 0.1% shorter than piecewise circular

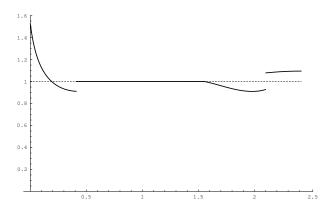


Borromean rings

- Piecewise analytic
- 42 pieces
- elliptic integrals



Curvature vs arclength



Möbius energy

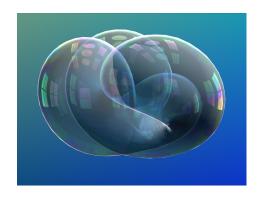
- Another notion of "best shape" for knots
- Möbius-invariant repulsive-charge energies
- Minimizers exist for prime knots [FHW]
- Some with symmetry known [KK],[KS]
- Numerical simulations [show video Knot Energies]

Willmore energy

Surface bending energy

$$\frac{1}{4\pi} \int H^2 dA$$

 Cell membranes (lipid vesicles)

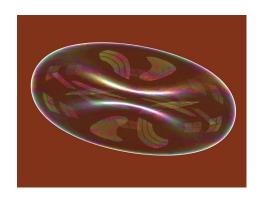


Willmore energy

Surface bending energy

$$\frac{1}{4\pi} \int H^2 dA$$

 Cell membranes (lipid vesicles)



Sphere eversion

- Turn a sphere inside out
- Mathematical rules
 Not too hard (embedded)
 Not too easy (hole or crease)
- Possible [Smale 1959]
 but no explicit eversion for many years [Phillips 1966]
- Must have quadruple point [BanMax 1981]
 Simplest sequence of events [Morin 1992]
- Usually work from half-way model
- Suffices to simplify this to round sphere

Example 3: Minimax eversion

- Energy ≥ k for surface with k-tuple point
- Spheres critical for W known [Bryant] Lowest saddle at W = 4
- Use this as halfway model for eversion [Kusner]
- The Optiverse

(Mathematical) Visualization Challenges

- Curved spaces, internal structure
- We usually see only outer surfaces, not inner structure
- Different depictions
 Transparent (like soap film)
 Solid (show shape)
 With gaps (show self-intersections)
- Internal structure even hard to show in sculpture

Artistic choices

- Mathematical objects have no intrinsic color (cf. Felice Frankel)
- Minimal surfaces or not?

International Snow Sculpture Championship 2004

- Our team led by Stan Wagon among 12 selected
- 20-ton, $10' \times 10' \times 12'$ block of snow
- Framework vs. solid depiction

International Snow Sculpture Championship 2004

- Our team of mathematicians among 12 selected
- 20-ton, $10' \times 10' \times 12'$ block of snow
- Framework vs. solid depiction

International Snow Sculpture Championship 2005

Symmetric sculptures

Bathsheba Grossman *Alterknot* 233 (tetrahedral)

Bathsheba Grossman Soliton 222

Symmetric sculptures

John Robinson *Genesis* 3*2 (pyritohedral)

Charles Perry *Eclipse*235 (icosahedral)

Symmetric sculptures

George Hart Eights 235 (icosahedral)

Dick Esterle Nobbly Wobbly 235 (icosahedral)

Brent Collins

- sculptor from Missouri
- Visual Mind with G. Francis
- o collaboration with C. Séquin
- often K < 0 surfaces minimal?

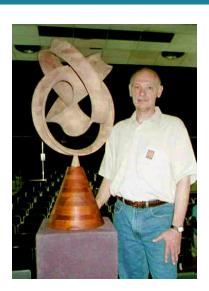
Brent Collins

Pax Mundi

Hyperbolic Hexagon II

Atomic Flower II

- wooden master at Bridges 1999
- merge paradigms: monkey saddle three ribbons

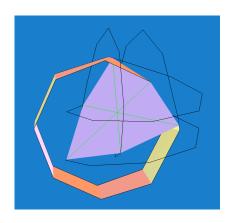


Atomic Flower II

bronze cast 2000
 by Steve Reinmuth

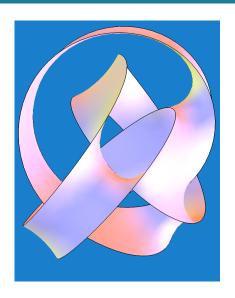
Boundary curve and initial surface

- 322 symmetry
- 3 helices, ⊥ axes
- cubic stretch; smooth joins
- central hexagon; 3 ribons



Minimizing area

- central hexagon moves to one side
- 33 symmetry
- ⇒ lines enforce 322
- ribbons insufficient curvature
- $\bullet \Rightarrow \text{work in } \mathbb{H}^3$
- adjust size parameter

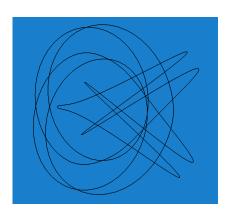


Minimal Flower 3

- not constant thickness
- instead use pressure
- CMC surfaces move too far
- homage to Brent Collins
- Intersculpt 2001 stereolithograph

Minimal Flower 4

- 422 symmetry
- how to align 4 helices?
- same tweaks as for MF3



Fused Deposition Models

 support material chemically removed

Fused Deposition Models

 support material chemically removed

Minimal Flowers

